
glmnet python vignette

Han Fang

Sep 18, 2018

Contents:

1 Glmnet Vignette (for python) 1
1.1 Authors . 1
1.2 Introduction . 1
1.3 Installation . 2
1.4 Usage . 2
1.5 Linear Regression . 2
1.6 Logistic Regression . 15
1.7 Poisson Models . 22
1.8 Cox Models . 26
1.9 References . 28

2 Indices and tables 29

i

ii

CHAPTER 1

Glmnet Vignette (for python)

July 12, 2017

1.1 Authors

Trevor Hastie, B. J. Balakumar

1.2 Introduction

Glmnet is a package that fits a generalized linear model via penalized maximum likelihood. The regularization path is
computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda. The algorithm
is extremely fast, and can exploit sparsity in the input matrix x. It fits linear, logistic and multinomial, poisson, and
Cox regression models. A variety of predictions can be made from the fitted models. It can also fit multi-response
linear regression.

The authors of glmnet are Jerome Friedman, Trevor Hastie, Rob Tibshirani and Noah Simon. The Python package
is maintained by B. J. Balakumar. The R package is maintained by Trevor Hastie. The matlab version of glmnet is
maintained by Junyang Qian. This vignette describes the usage of glmnet in Python.

glmnet solves the following problem:

min
𝛽0,𝛽

1

𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑙(𝑦𝑖, 𝛽0 + 𝛽𝑇𝑥𝑖)
2 + 𝜆

[︀
(1− 𝛼)||𝛽||22/2 + 𝛼||𝛽||1

]︀
,

over a grid of values of 𝜆 covering the entire range. Here 𝑙(𝑦, 𝜂) is the negative log-likelihood contribution for
observation 𝑖; e.g. for the Gaussian case it is 1

2 𝑙(𝑦 − 𝜂)2. The elastic-net penalty is controlled by 𝛼, and bridges the
gap between lasso (𝛼 = 1, the default) and ridge (𝛼 = 0). The tuning parameter 𝜆 controls the overall strength of the
penalty.

It is known that the ridge penalty shrinks the coefficients of correlated predictors towards each other while the lasso
tends to pick one of them and discard the others. The elastic-net penalty mixes these two; if predictors are correlated

1

glmnet python vignette

in groups, an 𝛼 = 0.5 tends to select the groups in or out together. This is a higher level parameter, and users might
pick a value upfront, else experiment with a few different values. One use of 𝛼 is for numerical stability; for example,
the elastic net with 𝛼 = 1− 𝜀 for some small 𝜀 > 0 performs much like the lasso, but removes any degeneracies and
wild behavior caused by extreme correlations.

The glmnet algorithms use cyclical coordinate descent, which successively optimizes the objective function over each
parameter with others fixed, and cycles repeatedly until convergence. The package also makes use of the strong
rules for efficient restriction of the active set. Due to highly efficient updates and techniques such as warm starts and
active-set convergence, our algorithms can compute the solution path very fast.

The code can handle sparse input-matrix formats, as well as range constraints on coefficients. The core of glmnet is a
set of fortran subroutines, which make for very fast execution.

The package also includes methods for prediction and plotting, and a function that performs K-fold cross-validation.

1.3 Installation

1.3.1 Using pip (recommended, courtesy: Han Fan)

pip install glmnet_py

1.3.2 Complied from source

git clone https://github.com/bbalasub1/glmnet_python.git
cd glmnet_python
python setup.py install

1.3.3 Requirement

Python 3, Linux

Currently, the checked-in version of GLMnet.so is compiled for the following config:

Linux: Linux version 2.6.32-573.26.1.el6.x86_64 (gcc version 4.4.7 20120313 (Red Hat 4.4.7-16) (GCC)) OS:
CentOS 6.7 (Final) Hardware: 8-core Intel(R) Core(TM) i7-2630QM gfortran: version 4.4.7 20120313 (Red Hat
4.4.7-17) (GCC)

1.4 Usage

import glmnet_python
from glmnet import glmnet

1.5 Linear Regression

Linear regression here refers to two families of models. One is gaussian, the Gaussian family, and the other is
mgaussian, the multiresponse Gaussian family. We first discuss the ordinary Gaussian and the multiresponse one
after that.

2 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

1.5.1 Linear Regression - Gaussian family

gaussian is the default family option in the function glmnet. Suppose we have observations 𝑥𝑖 ∈ R𝑝 and the
responses 𝑦𝑖 ∈ R, 𝑖 = 1, . . . , 𝑁 . The objective function for the Gaussian family is

min
(𝛽0,𝛽)∈R𝑝+1

1

2𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝑥𝑇
𝑖 𝛽)

2 + 𝜆
[︀
(1− 𝛼)||𝛽||22/2 + 𝛼||𝛽||1

]︀
,

where

𝜆 ≥ 0 is a complexity parameter and 0 ≤ 𝛼 ≤ 1 is a compromise between ridge (𝛼 = 0) and lasso (𝛼 = 1).

Coordinate descent is applied to solve the problem. Specifically, suppose we have current estimates 𝛽0 and 𝛽ℓ ∀𝑗 ∈
1, . . . , 𝑝. By computing the gradient at 𝛽𝑗 = 𝛽𝑗 and simple calculus, the update is

𝛽𝑗 ←
𝑆(1

𝑁

∑︀𝑁
𝑖=1 𝑥𝑖𝑗(𝑦𝑖 − 𝑦

(𝑗)
𝑖), 𝜆𝛼)

1 + 𝜆(1− 𝛼)
,

where

𝑦
(𝑗)
𝑖 = 𝛽0 +

∑︀
ℓ ̸=𝑗 𝑥𝑖ℓ𝛽ℓ, and 𝑆(𝑧, 𝛾) is the soft-thresholding operator with value sign(𝑧)(|𝑧| − 𝛾)+.

This formula above applies when the x variables are standardized to have unit variance (the default); it is slightly more
complicated when they are not. Note that for “family=gaussian”, glmnet standardizes 𝑦 to have unit variance before
computing its lambda sequence (and then unstandardizes the resulting coefficients); if you wish to reproduce/compare
results with other software, best to supply a standardized 𝑦 first (Using the “1/N” variance formula).

glmnet provides various options for users to customize the fit. We introduce some commonly used options here and
they can be specified in the glmnet function.

• alpha is for the elastic-net mixing parameter 𝛼, with range 𝛼 ∈ [0, 1]. 𝛼 = 1 is the lasso (default) and 𝛼 = 0
is the ridge.

• weights is for the observation weights. Default is 1 for each observation. (Note: glmnet rescales the weights
to sum to N, the sample size.)

• nlambda is the number of 𝜆 values in the sequence. Default is 100.

• lambda can be provided, but is typically not and the program constructs a sequence. When automatically
generated, the 𝜆 sequence is determined by lambda.max and lambda.min.ratio. The latter is the ratio
of smallest value of the generated 𝜆 sequence (say lambda.min) to lambda.max. The program then gen-
erated nlambda values linear on the log scale from lambda.max down to lambda.min. lambda.max
is not given, but easily computed from the input 𝑥 and 𝑦; it is the smallest value for lambda such that all the
coefficients are zero. For alpha=0 (ridge) lambda.max would be ∞; hence for this case we pick a value
corresponding to a small value for alpha close to zero.)

• standardize is a logical flag for x variable standardization, prior to fitting the model sequence. The coeffi-
cients are always returned on the original scale. Default is standardize=TRUE.

For more information, type help(glmnet) or simply ?glmnet. Let us start by loading the data:

In [1]: # Jupyter setup to expand cell display to 100% width on your screen (optional)
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:100% !important; }</style>"))

<IPython.core.display.HTML object>

In [2]: # Import relevant modules and setup for calling glmnet
%reset -f
%matplotlib inline

import sys

1.5. Linear Regression 3

glmnet python vignette

sys.path.append('../test')
sys.path.append('../lib')
import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings
from glmnet import glmnet; from glmnetPlot import glmnetPlot
from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict
from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef
from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict

parameters
baseDataDir= '../data/'

load data
x = scipy.loadtxt(baseDataDir + 'QuickStartExampleX.dat', dtype = scipy.float64)
y = scipy.loadtxt(baseDataDir + 'QuickStartExampleY.dat', dtype = scipy.float64)

create weights
t = scipy.ones((50, 1), dtype = scipy.float64)
wts = scipy.row_stack((t, 2*t))

As an example, we set 𝛼 = 0.2 (more like a ridge regression), and give double weights to the latter half of the
observations. To avoid too long a display here, we set nlambda to 20. In practice, however, the number of values
of 𝜆 is recommended to be 100 (default) or more. In most cases, it does not come with extra cost because of the
warm-starts used in the algorithm, and for nonlinear models leads to better convergence properties.

In [3]: # call glmnet
fit = glmnet(x = x.copy(), y = y.copy(), family = 'gaussian', \

weights = wts, \
alpha = 0.2, nlambda = 20
)

We can then print the glmnet object.

In [4]: glmnetPrint(fit)

df %dev lambdau

0 0.000000 0.000000 7.939020
1 4.000000 0.178852 4.889231
2 7.000000 0.444488 3.011024
3 7.000000 0.656716 1.854334
4 8.000000 0.784984 1.141988
5 9.000000 0.853935 0.703291
6 10.000000 0.886693 0.433121
7 11.000000 0.902462 0.266737
8 14.000000 0.910135 0.164269
9 17.000000 0.913833 0.101165
10 17.000000 0.915417 0.062302
11 17.000000 0.916037 0.038369
12 19.000000 0.916299 0.023629
13 20.000000 0.916405 0.014552
14 20.000000 0.916447 0.008962
15 20.000000 0.916463 0.005519
16 20.000000 0.916469 0.003399

This displays the call that produced the object fit and a three-column matrix with columns Df (the number of
nonzero coefficients), %dev (the percent deviance explained) and Lambda (the corresponding value of 𝜆).

(Note that the digits option can used to specify significant digits in the printout.)

Here the actual number of 𝜆‘s here is less than specified in the call. The reason lies in the stopping criteria of the
algorithm. According to the default internal settings, the computations stop if either the fractional change in deviance

4 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

down the path is less than 10−5 or the fraction of explained deviance reaches 0.999. From the last few lines , we see
the fraction of deviance does not change much and therefore the computation ends when meeting the stopping criteria.
We can change such internal parameters. For details, see the Appendix section or type help(glmnet.control).

We can plot the fitted object as in the previous section. There are more options in the plot function.

Users can decide what is on the X-axis. xvar allows three measures: “norm” for the ℓ1-norm of the coefficients
(default), “lambda” for the log-lambda value and “dev” for %deviance explained.

Users can also label the curves with variable sequence numbers simply by setting label = TRUE. Let’s plot “fit”
against the log-lambda value and with each curve labeled.

In [5]: glmnetPlot(fit, xvar = 'lambda', label = True);

Now when we plot against %deviance we get a very different picture. This is percent deviance explained on the
training data. What we see here is that toward the end of the path this value are not changing much, but the coefficients
are “blowing up” a bit. This lets us focus attention on the parts of the fit that matter. This will especially be true for
other models, such as logistic regression.

In [6]: glmnetPlot(fit, xvar = 'dev', label = True);

1.5. Linear Regression 5

glmnet python vignette

We can extract the coefficients and make predictions at certain values of 𝜆. Two commonly used options are:

• s specifies the value(s) of 𝜆 at which extraction is made.

• exact indicates whether the exact values of coefficients are desired or not. That is, if exact = TRUE, and
predictions are to be made at values of s not included in the original fit, these values of s are merged with
object$lambda, and the model is refit before predictions are made. If exact=FALSE (default), then the
predict function uses linear interpolation to make predictions for values of s that do not coincide with lambdas
used in the fitting algorithm.

A simple example is:

In [7]: any(fit['lambdau'] == 0.5)

Out[7]: False

In [8]: glmnetCoef(fit, s = scipy.float64([0.5]), exact = False)

Out[8]: array([[0.19909875],
[1.17465045],
[0.],
[0.53193465],
[0.],
[-0.76095948],
[0.46820941],
[0.06192676],
[0.38030149],
[0.],
[0.],
[0.14326099],
[0.],
[0.],
[-0.91120737],
[0.],

6 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

[0.],
[0.],
[0.00919663],
[0.],
[-0.86311705]])

The output is for False.(TBD) The exact = ‘True’ option is not yet implemented.

Users can make predictions from the fitted object. In addition to the options in coef, the primary argument is newx,
a matrix of new values for x. The type option allows users to choose the type of prediction: * “link” gives the fitted
values

• “response” the sames as “link” for “gaussian” family.

• “coefficients” computes the coefficients at values of s

• “nonzero” retuns a list of the indices of the nonzero coefficients for each value of s.

For example,

In [9]: fc = glmnetPredict(fit, x[0:5,:], ptype = 'response', \
s = scipy.float64([0.05]))

print(fc)

[[-0.98025907]
[2.29924528]
[0.60108862]
[2.35726679]
[1.75204208]]

gives the fitted values for the first 5 observations at 𝜆 = 0.05. If multiple values of s are supplied, a matrix of
predictions is produced.

Users can customize K-fold cross-validation. In addition to all the glmnet parameters, cvglmnet has its special
parameters including nfolds (the number of folds), foldid (user-supplied folds), ptype(the loss used for cross-
validation):

• “deviance” or “mse” uses squared loss

• “mae” uses mean absolute error

As an example,

In [10]: warnings.filterwarnings('ignore')
cvfit = cvglmnet(x = x.copy(), y = y.copy(), ptype = 'mse', nfolds = 20)
warnings.filterwarnings('default')

does 20-fold cross-validation, based on mean squared error criterion (default though).

Parallel computing is also supported by cvglmnet. Parallel processing is turned off by default. It can be turned on
using parallel=True in the cvglmnet call.

Parallel computing can significantly speed up the computation process, especially for large-scale problems. But for
smaller problems, it could result in a reduction in speed due to the additional overhead. User discretion is advised.

Functions coef and predict on cv.glmnet object are similar to those for a glmnet object, except that two special
strings are also supported by s (the values of 𝜆 requested):

• “lambda.1se”: the largest 𝜆 at which the MSE is within one standard error of the minimal MSE.

• “lambda.min”: the 𝜆 at which the minimal MSE is achieved.

In [11]: cvfit['lambda_min']

Out[11]: array([0.07569327])

In [12]: cvglmnetCoef(cvfit, s = 'lambda_min')

1.5. Linear Regression 7

glmnet python vignette

Out[12]: array([[0.14867414],
[1.33377821],
[0.],
[0.69787701],
[0.],
[-0.83726751],
[0.54334327],
[0.02668633],
[0.33741131],
[0.],
[0.],
[0.17105029],
[0.],
[0.],
[-1.0755268],
[0.],
[0.],
[0.],
[0.],
[0.],
[-1.05278699]])

In [13]: cvglmnetPredict(cvfit, newx = x[0:5,], s='lambda_min')

Out[13]: array([[-1.36388479],
[2.57134278],
[0.57297855],
[1.98814222],
[1.51798822]])

Users can control the folds used. Here we use the same folds so we can also select a value for 𝛼.

In [14]: foldid = scipy.random.choice(10, size = y.shape[0], replace = True)
cv1=cvglmnet(x = x.copy(),y = y.copy(),foldid=foldid,alpha=1)
cv0p5=cvglmnet(x = x.copy(),y = y.copy(),foldid=foldid,alpha=0.5)
cv0=cvglmnet(x = x.copy(),y = y.copy(),foldid=foldid,alpha=0)

There are no built-in plot functions to put them all on the same plot, so we are on our own here:

In [15]: f = plt.figure()
f.add_subplot(2,2,1)
cvglmnetPlot(cv1)
f.add_subplot(2,2,2)
cvglmnetPlot(cv0p5)
f.add_subplot(2,2,3)
cvglmnetPlot(cv0)
f.add_subplot(2,2,4)
plt.plot(scipy.log(cv1['lambdau']), cv1['cvm'], 'r.')
plt.hold(True)
plt.plot(scipy.log(cv0p5['lambdau']), cv0p5['cvm'], 'g.')
plt.plot(scipy.log(cv0['lambdau']), cv0['cvm'], 'b.')
plt.xlabel('log(Lambda)')
plt.ylabel(cv1['name'])
plt.xlim(-6, 4)
plt.ylim(0, 9)
plt.legend(('alpha = 1', 'alpha = 0.5', 'alpha = 0'), loc = 'upper left', prop={'size':6});

8 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

We see that lasso (alpha=1) does about the best here. We also see that the range of lambdas used differs with alpha.

1.5.2 Coefficient upper and lower bounds

These are recently added features that enhance the scope of the models. Suppose we want to fit our model, but
limit the coefficients to be bigger than -0.7 and less than 0.5. This is easily achieved via the upper.limits and
lower.limits arguments:

In [16]: cl = scipy.array([[-0.7], [0.5]], dtype = scipy.float64)
tfit=glmnet(x = x.copy(),y= y.copy(), cl = cl)
glmnetPlot(tfit);

1.5. Linear Regression 9

glmnet python vignette

These are rather arbitrary limits; often we want the coefficients to be positive, so we can set only lower.limit to
be 0. (Note, the lower limit must be no bigger than zero, and the upper limit no smaller than zero.) These bounds can
be a vector, with different values for each coefficient. If given as a scalar, the same number gets recycled for all.

1.5.3 Penalty factors

This argument allows users to apply separate penalty factors to each coefficient. Its default is 1 for each parameter,
but other values can be specified. In particular, any variable with penalty.factor equal to zero is not penalized
at all! Let 𝑣𝑗 denote the penalty factor for 𝑗 th variable. The penalty term becomes

𝜆

𝑝∑︁
𝑗=1

𝑣𝑗𝑃𝛼(𝛽𝑗) = 𝜆

𝑝∑︁
𝑗=1

𝑣𝑗

[︂
(1− 𝛼)

1

2
𝛽2
𝑗 + 𝛼|𝛽𝑗 |

]︂
.

Note the penalty factors are internally rescaled to sum to nvars.

This is very useful when people have prior knowledge or preference over the variables. In many cases, some variables
may be so important that one wants to keep them all the time, which can be achieved by setting corresponding penalty
factors to 0:

In [17]: pfac = scipy.ones([1, 20])
pfac[0, 4] = 0; pfac[0, 9] = 0; pfac[0, 14] = 0
pfit = glmnet(x = x.copy(), y = y.copy(), penalty_factor = pfac)
glmnetPlot(pfit, label = True);

10 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

We see from the labels that the three variables with 0 penalty factors always stay in the model, while the others follow
typical regularization paths and shrunken to 0 eventually.

Some other useful arguments. exclude allows one to block certain variables from being the model at all. Of course,
one could simply subset these out of x, but sometimes exclude is more useful, since it returns a full vector of
coefficients, just with the excluded ones set to zero. There is also an intercept argument which defaults to True;
if False the intercept is forced to be zero.

1.5.4 Customizing plots

Sometimes, especially when the number of variables is small, we want to add variable labels to a plot. Since glmnet
is intended primarily for wide data, this is not supprted in plot.glmnet. However, it is easy to do, as the following
little toy example shows.

We first generate some data, with 10 variables, and for lack of imagination and ease we give them simple character
names. We then fit a glmnet model, and make the standard plot.

In [18]: scipy.random.seed(101)
x = scipy.random.rand(100,10)
y = scipy.random.rand(100,1)
fit = glmnet(x = x, y = y)
glmnetPlot(fit);

1.5. Linear Regression 11

glmnet python vignette

We wish to label the curves with the variable names. Here’s a simple way to do this, using the matplotlib library
in python (and a little research into how to customize it). We need to have the positions of the coefficients at the end
of the path.

In [19]: %%capture
Output from this sample code has been suppressed due to (possible) Jupyter limitations
The code works just fine from ipython (tested on spyder)
c = glmnetCoef(fit)
c = c[1:, -1] # remove intercept and get the coefficients at the end of the path
h = glmnetPlot(fit)
ax1 = h['ax1']
xloc = plt.xlim()
xloc = xloc[1]
for i in range(len(c)):

ax1.text(xloc, c[i], 'var' + str(i));

We have done nothing here to avoid overwriting of labels, in the event that they are close together. This would be a bit
more work, but perhaps best left alone, anyway.

1.5.5 Linear Regression - Multiresponse Gaussian Family

The multiresponse Gaussian family is obtained using family = "mgaussian" option in glmnet. It is very
similar to the single-response case above. This is useful when there are a number of (correlated) responses - the so-
called “multi-task learning” problem. Here the sharing involves which variables are selected, since when a variable is
selected, a coefficient is fit for each response. Most of the options are the same, so we focus here on the differences
with the single response model.

Obviously, as the name suggests, 𝑦 is not a vector, but a matrix of quantitative responses in this section. The coefficients
at each value of lambda are also a matrix as a result.

12 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

Here we solve the following problem:

min
(𝛽0,𝛽)∈R(𝑝+1)×𝐾

1

2𝑁

𝑁∑︁
𝑖=1

||𝑦𝑖 − 𝛽0 − 𝛽𝑇𝑥𝑖||2𝐹 + 𝜆

⎡⎣(1− 𝛼)||𝛽||2𝐹 /2 + 𝛼

𝑝∑︁
𝑗=1

||𝛽𝑗 ||2

⎤⎦ .

Here, 𝛽𝑗 is the jth row of the 𝑝×𝐾 coefficient matrix 𝛽, and we replace the absolute penalty on each single coefficient
by a group-lasso penalty on each coefficient K-vector 𝛽𝑗 for a single predictor 𝑥𝑗 .

We use a set of data generated beforehand for illustration.

In [20]: # Import relevant modules and setup for calling glmnet
%reset -f
%matplotlib inline

import sys
sys.path.append('../test')
sys.path.append('../lib')
import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings
from glmnet import glmnet; from glmnetPlot import glmnetPlot
from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict
from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef
from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict

parameters
baseDataDir= '../data/'

load data
x = scipy.loadtxt(baseDataDir + 'MultiGaussianExampleX.dat', dtype = scipy.float64, delimiter = ',')
y = scipy.loadtxt(baseDataDir + 'MultiGaussianExampleY.dat', dtype = scipy.float64, delimiter = ',')

We fit the data, with an object “mfit” returned.

In [21]: mfit = glmnet(x = x.copy(), y = y.copy(), family = 'mgaussian')

For multiresponse Gaussian, the options in glmnet are almost the same as the single-response case, such as alpha,
weights, nlambda, standardize. A exception to be noticed is that standardize.response is only for
mgaussian family. The default value is FALSE. If standardize.response = TRUE, it standardizes the
response variables.

To visualize the coefficients, we use the plot function.

In [22]: glmnetPlot(mfit, xvar = 'lambda', label = True, ptype = '2norm');

1.5. Linear Regression 13

glmnet python vignette

Note that we set type.coef = "2norm". Under this setting, a single curve is plotted per variable, with value
equal to the ℓ2 norm. The default setting is type.coef = "coef", where a coefficient plot is created for each
response (multiple figures).

xvar and label are two other options besides ordinary graphical parameters. They are the same as the single-
response case.

We can extract the coefficients at requested values of 𝜆 by using the function coef and make predictions by predict.
The usage is similar and we only provide an example of predict here.

In [23]: f = glmnetPredict(mfit, x[0:5,:], s = scipy.float64([0.1, 0.01]))
print(f[:,:,0], '\n')
print(f[:,:,1])

[[-4.71062632 -1.16345744 0.60276341 3.74098912]
[4.13017346 -3.05079679 -1.21226299 4.97014084]
[3.15952287 -0.57596208 0.2607981 2.05397555]
[0.64592424 2.12056049 -0.22520497 3.14628582]
[-1.17918903 0.10562619 -7.33529649 3.24836992]]

[[-4.6415158 -1.22902821 0.61182888 3.77952124]
[4.47128428 -3.25296583 -1.25725829 5.2660386]
[3.47352281 -0.69292309 0.46840369 2.05557354]
[0.73533106 2.29650827 -0.21902966 2.98937089]
[-1.27599301 0.28925358 -7.82592058 3.20521075]]

The prediction result is saved in a three-dimensional array with the first two dimensions being the prediction matrix
for each response variable and the third indicating the response variables.

We can also do k-fold cross-validation. The options are almost the same as the ordinary Gaussian family and we do
not expand here.

In [24]: warnings.filterwarnings('ignore')
cvmfit = cvglmnet(x = x.copy(), y = y.copy(), family = "mgaussian")

14 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

warnings.filterwarnings('default')

We plot the resulting cv.glmnet object “cvmfit”.

In [25]: cvglmnetPlot(cvmfit)

To show explicitly the selected optimal values of 𝜆, type

In [26]: cvmfit['lambda_min']

Out[26]: array([0.04731812])

In [27]: cvmfit['lambda_1se']

Out[27]: array([0.1445027])

As before, the first one is the value at which the minimal mean squared error is achieved and the second is for the most
regularized model whose mean squared error is within one standard error of the minimal.

Prediction for cvglmnet object works almost the same as for glmnet object. We omit the details here.

1.6 Logistic Regression

Logistic regression is another widely-used model when the response is categorical. If there are two possible outcomes,
we use the binomial distribution, else we use the multinomial.

1.6.1 Logistic Regression: Binomial Models

For the binomial model, suppose the response variable takes value in 𝒢 = {1, 2}. Denote 𝑦𝑖 = 𝐼(𝑔𝑖 = 1). We model

Pr(𝐺 = 2|𝑋 = 𝑥) +
𝑒𝛽0+𝛽𝑇 𝑥

1 + 𝑒𝛽0+𝛽𝑇 𝑥
,

1.6. Logistic Regression 15

glmnet python vignette

which can be written in the following form

log
Pr(𝐺 = 2|𝑋 = 𝑥)

Pr(𝐺 = 1|𝑋 = 𝑥)
= 𝛽0 + 𝛽𝑇𝑥,

the so-called “logistic” or log-odds transformation.

The objective function for the penalized logistic regression uses the negative binomial log-likelihood, and is

min
(𝛽0,𝛽)∈R𝑝+1

−

[︃
1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 · (𝛽0 + 𝑥𝑇
𝑖 𝛽)− log(1 + 𝑒(𝛽0+𝑥𝑇

𝑖 𝛽))

]︃
+ 𝜆

[︀
(1− 𝛼)||𝛽||22/2 + 𝛼||𝛽||1

]︀
.

Logistic regression is often plagued with degeneracies when 𝑝 > 𝑁 and exhibits wild behavior even when 𝑁 is close
to 𝑝; the elastic-net penalty alleviates these issues, and regularizes and selects variables as well.

Our algorithm uses a quadratic approximation to the log-likelihood, and then coordinate descent on the resulting
penalized weighted least-squares problem. These constitute an outer and inner loop.

For illustration purpose, we load pre-generated input matrix x and the response vector y from the data file.

In [28]: # Import relevant modules and setup for calling glmnet
%reset -f
%matplotlib inline

import sys
sys.path.append('../test')
sys.path.append('../lib')
import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings
from glmnet import glmnet; from glmnetPlot import glmnetPlot
from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict
from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef
from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict

parameters
baseDataDir= '../data/'

load data
x = scipy.loadtxt(baseDataDir + 'BinomialExampleX.dat', dtype = scipy.float64, delimiter = ',')
y = scipy.loadtxt(baseDataDir + 'BinomialExampleY.dat', dtype = scipy.float64)

The input matrix 𝑥 is the same as other families. For binomial logistic regression, the response variable 𝑦 should be
either a factor with two levels, or a two-column matrix of counts or proportions.

Other optional arguments of glmnet for binomial regression are almost same as those for Gaussian family. Don’t
forget to set family option to “binomial”.

In [29]: fit = glmnet(x = x.copy(), y = y.copy(), family = 'binomial')

Like before, we can print and plot the fitted object, extract the coefficients at specific 𝜆‘s and also make predictions. For
plotting, the optional arguments such as xvar and label are similar to the Gaussian. We plot against the deviance
explained and show the labels.

In [30]: glmnetPlot(fit, xvar = 'dev', label = True);

16 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

Prediction is a little different for logistic from Gaussian, mainly in the option type. “link” and “response” are never
equivalent and “class” is only available for logistic regression. In summary, * “link” gives the linear predictors

• “response” gives the fitted probabilities

• “class” produces the class label corresponding to the maximum probability.

• “coefficients” computes the coefficients at values of s

• “nonzero” retuns a list of the indices of the nonzero coefficients for each value of s.

For “binomial” models, results (“link”, “response”, “coefficients”, “nonzero”) are returned only for the class corre-
sponding to the second level of the factor response.

In the following example, we make prediction of the class labels at 𝜆 = 0.05, 0.01.

In [31]: glmnetPredict(fit, newx = x[0:5,], ptype='class', s = scipy.array([0.05, 0.01]))

Out[31]: array([[0., 0.],
[1., 1.],
[1., 1.],
[0., 0.],
[1., 1.]])

For logistic regression, cvglmnet has similar arguments and usage as Gaussian. nfolds, weights, lambda,
parallel are all available to users. There are some differences in ptype: “deviance” and “mse” do not both mean
squared loss and “class” is enabled. Hence, * “mse” uses squared loss.

• “deviance” uses actual deviance.

• “mae” uses mean absolute error.

• “class” gives misclassification error.

• “auc” (for two-class logistic regression ONLY) gives area under the ROC curve.

1.6. Logistic Regression 17

glmnet python vignette

For example,

In [32]: warnings.filterwarnings('ignore')
cvfit = cvglmnet(x = x.copy(), y = y.copy(), family = 'binomial', ptype = 'class')
warnings.filterwarnings('default')

It uses misclassification error as the criterion for 10-fold cross-validation.

We plot the object and show the optimal values of 𝜆.

In [33]: cvglmnetPlot(cvfit)

In [34]: cvfit['lambda_min']

Out[34]: array([0.00333032])

In [35]: cvfit['lambda_1se']

Out[35]: array([0.00638726])

coef and predict are simliar to the Gaussian case and we omit the details. We review by some examples.

In [36]: cvglmnetCoef(cvfit, s = 'lambda_min')

Out[36]: array([[0.1834094],
[0.63979413],
[1.75552224],
[-1.01816297],
[-2.04021446],
[-0.3708456],
[-2.17833787],
[0.37214969],
[-1.11649964],
[1.59942098],
[-3.00907083],
[-0.3709413],

18 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

[-0.50788757],
[-0.54759695],
[0.37853469],
[0.],
[1.22026778],
[-0.00760482],
[-0.8171956],
[-0.4683986],
[-0.44077522],
[0.],
[0.51053862],
[1.06639664],
[-0.57196411],
[1.10470005],
[-0.529917],
[-0.67932357],
[1.02441643],
[-0.49368737],
[0.41948873]])

As mentioned previously, the results returned here are only for the second level of the factor response.

In [37]: cvglmnetPredict(cvfit, newx = x[0:10,], s = 'lambda_min', ptype = 'class')

Out[37]: array([[0.],
[1.],
[1.],
[0.],
[1.],
[0.],
[0.],
[0.],
[1.],
[1.]])

Like other GLMs, glmnet allows for an “offset”. This is a fixed vector of N numbers that is added into the linear
predictor. For example, you may have fitted some other logistic regression using other variables (and data), and now
you want to see if the present variables can add anything. So you use the predicted logit from the other model as an
offset in.

Like other GLMs, glmnet allows for an “offset”. This is a fixed vector of N numbers that is added into the linear
predictor. For example, you may have fitted some other logistic regression using other variables (and data), and now
you want to see if the present variables can add anything. So you use the predicted logit from the other model as an
offset in.

1.6.2 Logistic Regression - Multinomial Models

For the multinomial model, suppose the response variable has 𝐾 levels 𝒢 = {1, 2, . . . ,𝐾}. Here we model

Pr(𝐺 = 𝑘|𝑋 = 𝑥) =
𝑒𝛽0𝑘+𝛽𝑇

𝑘 𝑥∑︀𝐾
ℓ=1 𝑒

𝛽0ℓ+𝛽𝑇
ℓ 𝑥

.

Let 𝑌 be the 𝑁×𝐾 indicator response matrix, with elements 𝑦𝑖ℓ = 𝐼(𝑔𝑖 = ℓ). Then the elastic-net penalized negative
log-likelihood function becomes

ℓ({𝛽0𝑘, 𝛽𝑘}𝐾1) = −

[︃
1

𝑁

𝑁∑︁
𝑖=1

(︁ 𝐾∑︁
𝑘=1

𝑦𝑖𝑙(𝛽0𝑘 + 𝑥𝑇
𝑖 𝛽𝑘)− log

(︀ 𝐾∑︁
𝑘=1

𝑒𝛽0𝑘+𝑥𝑇
𝑖 𝛽𝑘
)︀)︁]︃

+ 𝜆

⎡⎣(1− 𝛼)||𝛽||2𝐹 /2 + 𝛼

𝑝∑︁
𝑗=1

||𝛽𝑗 ||𝑞

⎤⎦ .

1.6. Logistic Regression 19

glmnet python vignette

Here we really abuse notation! 𝛽 is a 𝑝×𝐾 matrix of coefficients. 𝛽𝑘 refers to the kth column (for outcome category
k), and 𝛽𝑗 the jth row (vector of K coefficients for variable j). The last penalty term is ||𝛽𝑗 ||𝑞 , we have two options for
q: 𝑞 ∈ {1, 2}. When q=1, this is a lasso penalty on each of the parameters. When q=2, this is a grouped-lasso penalty
on all the K coefficients for a particular variables, which makes them all be zero or nonzero together.

The standard Newton algorithm can be tedious here. Instead, we use a so-called partial Newton algorithm by making
a partial quadratic approximation to the log-likelihood, allowing only (𝛽0𝑘, 𝛽𝑘) to vary for a single class at a time. For
each value of 𝜆, we first cycle over all classes indexed by 𝑘, computing each time a partial quadratic approximation
about the parameters of the current class. Then the inner procedure is almost the same as for the binomial case. This
is the case for lasso (q=1). When q=2, we use a different approach, which we wont dwell on here.

For the multinomial case, the usage is similar to logistic regression, and we mainly illustrate by examples and address
any differences. We load a set of generated data.

In [38]: # Import relevant modules and setup for calling glmnet
%reset -f
%matplotlib inline

import sys
sys.path.append('../test')
sys.path.append('../lib')
import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings
from glmnet import glmnet; from glmnetPlot import glmnetPlot
from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict
from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef
from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict

parameters
baseDataDir= '../data/'

load data
x = scipy.loadtxt(baseDataDir + 'MultinomialExampleX.dat', dtype = scipy.float64, delimiter = ',')
y = scipy.loadtxt(baseDataDir + 'MultinomialExampleY.dat', dtype = scipy.float64)

The optional arguments in glmnet for multinomial logistic regression are mostly similar to binomial regression
except for a few cases.

The response variable can be a nc >= 2 level factor, or a nc-column matrix of counts or proportions. Internally
glmnet will make the rows of this matrix sum to 1, and absorb the total mass into the weight for that observation.

offset should be a nobs x nc matrix if there is one.

A special option for multinomial regression is mtype, which allows the usage of a grouped lasso penalty if mtype
= 'grouped'. This will ensure that the multinomial coefficients for a variable are all in or out together, just like for
the multi-response Gaussian.

In [39]: fit = glmnet(x = x.copy(), y = y.copy(), family = 'multinomial', mtype = 'grouped')

We plot the resulting object “fit”.

In [40]: glmnetPlot(fit, xvar = 'lambda', label = True, ptype = '2norm');

20 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

The options are xvar, label and ptype, in addition to other ordinary graphical parameters.

xvar and label are the same as other families while ptype is only for multinomial regression and multiresponse
Gaussian model. It can produce a figure of coefficients for each response variable if ptype = "coef" or a figure
showing the ℓ2-norm in one figure if ptype = "2norm"

We can also do cross-validation and plot the returned object.

In [41]: warnings.filterwarnings('ignore')
cvfit=cvglmnet(x = x.copy(), y = y.copy(), family='multinomial', mtype = 'grouped');
warnings.filterwarnings('default')
cvglmnetPlot(cvfit)

1.6. Logistic Regression 21

glmnet python vignette

Note that although mtype is not a typical argument in cvglmnet, in fact any argument that can be passed to glmnet
is valid in the argument list of cvglmnet. We also use parallel computing to accelerate the calculation.

Users may wish to predict at the optimally selected 𝜆:

In [42]: cvglmnetPredict(cvfit, newx = x[0:10, :], s = 'lambda_min', ptype = 'class')

Out[42]: array([3., 2., 2., 1., 1., 3., 3., 1., 1., 2.])

1.7 Poisson Models

Poisson regression is used to model count data under the assumption of Poisson error, or otherwise non-negative data
where the mean and variance are proportional. Like the Gaussian and binomial model, the Poisson is a member of the
exponential family of distributions. We usually model its positive mean on the log scale: log𝜇(𝑥) = 𝛽0 + 𝛽′𝑥. The
log-likelihood for observations {𝑥𝑖, 𝑦𝑖}𝑁1 is given my

𝑙(𝛽|𝑋,𝑌) =

𝑁∑︁
𝑖=1

(𝑦𝑖(𝛽0 + 𝛽′𝑥𝑖)− 𝑒𝛽0+𝛽𝑇 𝑥𝑖 .

As before, we optimize the penalized log-likelihood:

min
𝛽0,𝛽
− 1

𝑁
𝑙(𝛽|𝑋,𝑌) + 𝜆

(︃
(1− 𝛼)

𝑁∑︁
𝑖=1

𝛽2
𝑖 /2) + 𝛼

𝑁∑︁
𝑖=1

|𝛽𝑖|

)︃
.

Glmnet uses an outer Newton loop, and an inner weighted least-squares loop (as in logistic regression) to optimize this
criterion.

First, we load a pre-generated set of Poisson data.

22 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

In [43]: # Import relevant modules and setup for calling glmnet
%reset -f
%matplotlib inline

import sys
sys.path.append('../test')
sys.path.append('../lib')
import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings
from glmnet import glmnet; from glmnetPlot import glmnetPlot
from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict
from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef
from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict

parameters
baseDataDir= '../data/'

load data
x = scipy.loadtxt(baseDataDir + 'PoissonExampleX.dat', dtype = scipy.float64, delimiter = ',')
y = scipy.loadtxt(baseDataDir + 'PoissonExampleY.dat', dtype = scipy.float64, delimiter = ',')

We apply the function glmnet with the "poisson" option.

In [44]: fit = glmnet(x = x.copy(), y = y.copy(), family = 'poisson')

The optional input arguments of glmnet for "poisson" family are similar to those for others.

offset is a useful argument particularly in Poisson models.

When dealing with rate data in Poisson models, the counts collected are often based on different exposures, such as
length of time observed, area and years. A poisson rate 𝜇(𝑥) is relative to a unit exposure time, so if an observation
𝑦𝑖 was exposed for 𝐸𝑖 units of time, then the expected count would be 𝐸𝑖𝜇(𝑥), and the log mean would be log(𝐸𝑖) +
log(𝜇(𝑥). In a case like this, we would supply an offset log(𝐸𝑖) for each observation. Hence offset is a vector of
length nobs that is included in the linear predictor. Other families can also use options, typically for different reasons.

(Warning: if offset is supplied in glmnet, offsets must also also be supplied to predict to make reasonable
predictions.)

Again, we plot the coefficients to have a first sense of the result.

In [45]: glmnetPlot(fit);

1.7. Poisson Models 23

glmnet python vignette

Like before, we can extract the coefficients and make predictions at certain 𝜆‘s by using coef and predict respec-
tively. The optional input arguments are similar to those for other families. In function predict, the option type,
which is the type of prediction required, has its own specialties for Poisson family. That is, * “link” (default) gives
the linear predictors like others * “response” gives the fitted mean * “coefficients” computes the coefficients at the
requested values for s, which can also be realized by coef function * “nonzero” returns a a list of the indices of the
nonzero coefficients for each value of s.

For example, we can do as follows:

In [46]: glmnetCoef(fit, s = scipy.float64([1.0]))

Out[46]: array([[0.61123371],
[0.45819758],
[-0.77060709],
[1.34015128],
[0.043505],
[-0.20325967],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.01816309],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.]])

24 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

In [47]: glmnetPredict(fit, x[0:5,:], ptype = 'response', s = scipy.float64([0.1, 0.01]))

Out[47]: array([[2.49442322, 2.54623385],
[10.35131198, 10.33773624],
[0.11797039, 0.10639897],
[0.97134115, 0.92329512],
[1.11334721, 1.07256799]])

We may also use cross-validation to find the optimal 𝜆‘s and thus make inferences.

In [48]: warnings.filterwarnings('ignore')
cvfit = cvglmnet(x.copy(), y.copy(), family = 'poisson')
warnings.filterwarnings('default')

Options are almost the same as the Gaussian family except that for type.measure, * “deviance” (default) gives the
deviance * “mse” stands for mean squared error * “mae” is for mean absolute error.

We can plot the cvglmnet object.

In [49]: cvglmnetPlot(cvfit)

We can also show the optimal 𝜆‘s and the corresponding coefficients.

In [50]: optlam = scipy.array([cvfit['lambda_min'], cvfit['lambda_1se']]).reshape([2,])
cvglmnetCoef(cvfit, s = optlam)

Out[50]: array([[2.72128916e-02, 1.85696196e-01],
[6.20006263e-01, 5.75373801e-01],
[-9.85744959e-01, -9.32121975e-01],
[1.52693390e+00, 1.47056730e+00],
[2.32156777e-01, 1.96923579e-01],
[-3.37405607e-01, -3.04694503e-01],
[1.22308275e-03, 0.00000000e+00],
[-1.35769399e-02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00],

1.7. Poisson Models 25

glmnet python vignette

[0.00000000e+00, 0.00000000e+00],
[1.69722836e-02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00],
[3.10187944e-02, 2.58501705e-02],
[-2.92817638e-02, 0.00000000e+00],
[3.38822516e-02, 0.00000000e+00],
[-6.66067519e-03, 0.00000000e+00],
[1.83937264e-02, 0.00000000e+00],
[0.00000000e+00, 0.00000000e+00],
[4.54888769e-03, 0.00000000e+00],
[-3.45423073e-02, 0.00000000e+00],
[1.20550886e-02, 9.92954798e-03]])

The predict method is similar and we do not repeat it here.

1.8 Cox Models

The Cox proportional hazards model is commonly used for the study of the relationship beteween predictor variables
and survival time. In the usual survival analysis framework, we have data of the form (𝑦1, 𝑥1, 𝛿1), . . . , (𝑦𝑛, 𝑥𝑛, 𝛿𝑛)
where 𝑦𝑖, the observed time, is a time of failure if 𝛿𝑖 is 1 or right-censoring if 𝛿𝑖 is 0. We also let 𝑡1 < 𝑡2 < . . . < 𝑡𝑚
be the increasing list of unique failure times, and 𝑗(𝑖) denote the index of the observation failing at time 𝑡𝑖.

The Cox model assumes a semi-parametric form for the hazard

ℎ𝑖(𝑡) = ℎ0(𝑡)𝑒
𝑥𝑇
𝑖 𝛽 ,

where ℎ𝑖(𝑡) is the hazard for patient 𝑖 at time 𝑡, ℎ0(𝑡) is a shared baseline hazard, and 𝛽 is a fixed, length 𝑝 vector. In
the classic setting 𝑛 ≥ 𝑝, inference is made via the partial likelihood

𝐿(𝛽) =

𝑚∏︁
𝑖=1

𝑒𝑥
𝑇
𝑗(𝑖)𝛽∑︀

𝑗∈𝑅𝑖
𝑒𝑥

𝑇
𝑗 𝛽

,

where 𝑅𝑖 is the set of indices 𝑗 with 𝑦𝑗 ≥ 𝑡𝑖 (those at risk at time 𝑡𝑖).

Note there is no intercept in the Cox mode (its built into the baseline hazard, and like it, would cancel in the partial
likelihood.)

We penalize the negative log of the partial likelihood, just like the other models, with an elastic-net penalty.

We use a pre-generated set of sample data and response. Users can load their own data and follow a similar procedure.
In this case 𝑥 must be an 𝑛 × 𝑝 matrix of covariate values — each row corresponds to a patient and each column a
covariate. 𝑦 is an 𝑛 × 2 matrix, with a column “time” of failure/censoring times, and “status” a 0/1 indicator, with 1
meaning the time is a failure time, and zero a censoring time.

In [51]: # Import relevant modules and setup for calling glmnet
%reset -f
%matplotlib inline

import sys
sys.path.append('../test')
sys.path.append('../lib')
import scipy, importlib, pprint, matplotlib.pyplot as plt, warnings
from glmnet import glmnet; from glmnetPlot import glmnetPlot
from glmnetPrint import glmnetPrint; from glmnetCoef import glmnetCoef; from glmnetPredict import glmnetPredict
from cvglmnet import cvglmnet; from cvglmnetCoef import cvglmnetCoef
from cvglmnetPlot import cvglmnetPlot; from cvglmnetPredict import cvglmnetPredict

parameters

26 Chapter 1. Glmnet Vignette (for python)

glmnet python vignette

baseDataDir= '../data/'

load data
x = scipy.loadtxt(baseDataDir + 'CoxExampleX.dat', dtype = scipy.float64, delimiter = ',')
y = scipy.loadtxt(baseDataDir + 'CoxExampleY.dat', dtype = scipy.float64, delimiter = ',')

The Surv function in the package survival can create such a matrix. Note, however, that the coxph and related
linear models can handle interval and other fors of censoring, while glmnet can only handle right censoring in its
present form.

We apply the glmnet function to compute the solution path under default settings.

In [52]: fit = glmnet(x = x.copy(), y = y.copy(), family = 'cox')

Warning: Cox model has no intercept!

All the standard options are available such as alpha, weights, nlambda and standardize. Their usage is
similar as in the Gaussian case and we omit the details here. Users can also refer to the help file help(glmnet).

We can plot the coefficients.

In [53]: glmnetPlot(fit);

As before, we can extract the coefficients at certain values of 𝜆.

In [54]: glmnetCoef(fit, s = scipy.float64([0.05]))

Out[54]: array([[0.37693638],
[-0.09547797],
[-0.13595972],
[0.09814146],
[-0.11437545],
[-0.38898545],
[0.242914],
[0.03647596],

1.8. Cox Models 27

glmnet python vignette

[0.34739813],
[0.03865115],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.],
[0.]])

Since the Cox Model is not commonly used for prediction, we do not give an illustrative example on prediction. If
needed, users can refer to the help file by typing help(predict.glmnet).

Currently, cross-validation is not implemented for cox case. But this is not difficult to do using the existing glmnet
calls that work perfectly well for this case. (TBD: cvglmnet to be implemented for cox).

1.9 References

Jerome Friedman, Trevor Hastie and Rob Tibshirani. (2008). Regularization Paths for Generalized Linear Models via
Coordinate Descent Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010.

Noah Simon, Jerome Friedman, Trevor Hastie and Rob Tibshirani. (2011). Regularization Paths for Cox’s Proportional
Hazards Model via Coordinate Descent Journal of Statistical Software, Vol. 39(5) 1-13.

Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan Taylor, Ryan J. Tibshirani.
(2010). Strong Rules for Discarding Predictors in Lasso-type Problems Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 74(2), 245-266.

Noah Simon, Jerome Friedman and Trevor Hastie (2013). A Blockwise Descent Algorithm for Group-penalized
Multiresponse and Multinomial Regression

28 Chapter 1. Glmnet Vignette (for python)

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

29

	Glmnet Vignette (for python)
	Authors
	Introduction
	Installation
	Usage
	Linear Regression
	Logistic Regression
	Poisson Models
	Cox Models
	References

	Indices and tables

